Primes matrix


Some time ago, I already wrote about representation ideas of primes and we saw that we run in troubles with this. Today, I want to present you a similar approach.

Let’s start again with our equation

$$ x_{ij} = \left(2x_{i} + 1\right)x_{j} + x_{i} \\ y_{ij} = \left(2x_{ij} + 1\right) $$

and the following represenation

$$ x_{1j} \ \ \ \ | 00010010010010010010 \dots \\ x_{2j} \ \ \ \ | 00000010000100001000 \dots \\ x_{\left(1,2\right),j} | 11101101101001100101 \dots $$

The first line is given by \(x_{1j} = 3x_{j} + 1 = 4, 7, 10, 13, 16, 19\). If we look a the numbers from 1 to 20 (from left to right), we represent all numbers which are generated by \(x_{1j}\), by ‘1’ and the other numbers by ‘0’. In the second line, we do the same for \(x_{2j} = 5x_{j} + 2 = 7, 12, 17\).

In the third line we see \(x_{\left(1,2\right),j}\), which represents all numbers which are not element of \(x_{1j}\) and not element of \(x_{2j}\) by ‘1’ and the others by ‘0’. So we can write

$$ x_{\left(1,2\right),j} = \overline{x_{1j}} \cdot \overline{x_{2j}} $$

. Ok. What can we do with this, now?

At first, we look at \(x_{1j}\) and \(x_{2j}\). We will rewrite them to matrices \(X_{\left(1\right)}^{n\times n}\) and \(X_{\left(2\right)}^{n\times n}\). This matrices, all of the same size \(n\times n\), have the numbers from the representation above as diagonal entries. All other entries are ‘0’.

$$ X_{\left(1\right)}^{n\times n} := \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \left(x_{\left(1\right),kj}\right)_{k=1,\dots,n \ , j=1,\dots, n} \ \delta_{kj} $$
$$ X_{\left(2\right)}^{n\times n} := \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \left(x_{\left(2\right),kj}\right)_{k=1,\dots,n \ , j=1,\dots, n} \ \delta_{kj} $$

Here are

$$ x_{\left(i\right),kj} := \left\{ \begin{array}{l@{\quad \quad}l} 1 & \mathrm{if} \ k = \left(2x_{i} + 1\right)x_{l} + x_{i} \\ 0 & \mathrm{else} \end{array} \right. $$

and

$$ \delta_{kj} := \left\{ \begin{array}{l@{\quad \quad}l} 1 & \mathrm{if} \ k = j \\ 0 & \mathrm{else} \end{array} \right. $$

With this, we get \(\overline{X_{\left(i\right)}^{n\times n}}\) by

$$ \overline{X_{\left(i\right)}^{n\times n}} = \mathbb{1}_{n} - X_{\left(i\right)}^{n\times n} $$

For an arbitrary number \(i=a,\dots,b\), \(a,b \in \mathbb{N}\), \(a \le b\), of equations \(x_{ij}\) we receive

$$ X_{\left(a,\dots,b\right)}^{n \times n} = \prod_{i=a}^{b} \left(\mathbb{1}_{n} - X_{\left(i\right)}^{n\times n}\right) $$

and so

$$ x_{\left(a,\dots,b\right),kj} = \prod_{i=a}^{b} \left(1 - x_{\left(i\right),kj}\right)\delta_{kj} \\ $$

We received a matrix with ‘1’ entries at the places \(j=k\) which represent primes and else ‘0’.