Primes matrix: Approximation 2

https://blog.carolin-zoebelein.de/2018/04/primesapprox2.html
Thu 05 Apr 2018 in Math, Carolin Zöbelein

Since I wasn't happy about the final sum in my last post Primes matrix: Approximation, I think about an alternative way.

We had
$x_{(a, \ldots, b), k j}=\lim _{m \rightarrow \infty}\left(\prod_{i=a}^{b} \exp \left(I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)\right)\right) \delta_{k j}=\lim _{m \rightarrow \infty} \exp \left(\sum_{i=a}^{b} I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)\right) \delta_{k j}$
in which we made the product over all exp-functions for each x_{i}. Now, instead we will do the product over the arguments of the exp-functions

$$
x_{(a, \ldots, b), k j}=\lim _{m \rightarrow \infty} \exp \left(\prod_{i=a}^{b} I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)\right) \delta_{k j}
$$

Let's look at the qualities of this product

$$
\prod_{i=a}^{b} \frac{k-x_{i}}{2 x_{i}+1}
$$

and under which conditions we receive integers. From my work https://github.c om/Samdney/primescalc we already know that we get troubles if at least one of the $2 x_{i}+1$ is a divisible number. Hence, we always asume that all our numbers $2 x_{i}+1$ are primes.

We receive integer values in the following cases

- Case 1: For all k-values which are also solutions for every single expequation.
- Case 2: For all k-values which is a solution for at least one single expequation and also leads to the trivial solution with $x_{(1), j}=N\left(2 x_{(2), i}+1\right)$, $N \in \mathbb{N}$.

For the second case, we take the example of two equations with $x_{1}=2$ and $x_{2}=3$

$$
\frac{k-x_{1}}{2 x_{1}+1} \frac{k-x_{2}}{2 x_{2}+1}=\frac{(k-2)(k-3)}{5 \cdot 7}
$$

Here we receive one solution for $k=37, \frac{35 \cdot 34}{35}=34$, which is also a solution for $\frac{37-2}{5}=7$ and an other solution for $k=38, \frac{36 \cdot 35}{35}=36$ which is also a solution
for $\frac{38-3}{7}=5$. We see that k leads to the trivial case in which x_{j} of one single exp-equation is equal to the prime value of an other single exp-equation or the product of primes of several single exp-equations.

