Primes matrix: Approximation

https://blog.carolin-zoebelein.de/2018/03/primes-matrix-approximation. html
Sat 31 Mar 2018 in Math, Carolin Zöbelein

Last week, I wrote in Primes matrix about a possibility to represent primes. The negative part of this was, that there isn't a nice way to generate $X_{(i)}^{n \times n}$. Today, I want to add a few lines, how you can approximate it.

Let's look again at

$$
\begin{aligned}
X_{(1)}^{n \times n}:=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \ddots
\end{array}\right)=\left(x_{(1), k j}\right)_{k=1, \ldots, n, j=1, \ldots, n} \delta_{k j} \\
X_{(2)}^{n \times n}:=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \ddots
\end{array}\right)=\left(x_{(2), k j}\right)_{k=1, \ldots, n, j=1, \ldots, n} \delta_{k j}
\end{aligned}
$$

Instead of the definition from my last post, now, we will define $x_{(i), k j}$ in the following way

$$
x_{(i), k j}:=\lim _{m \rightarrow \infty} \cos ^{2 m}\left(2 \pi \frac{k-x_{i}}{2 x_{i}+1}\right) \delta_{k j}
$$

and

$$
\delta_{k j}:= \begin{cases}1 & \text { if } k=j \\ 0 & \text { else }\end{cases}
$$

Explanation: Like in our old definition, we always get an ' 1 ' at all places which presents a divisible number for a given x_{i}. Now, at the other positions, we get
an value v between $0<|v|<1$, instead of ' 0 ' in our old definition. To get our ' 0 's, like before, we use $\lim _{m \rightarrow \infty}$. The factor two ensures a positive approxiation value.

With this, we also get

$$
\overline{x_{(i), k j}}:=\left(1-x_{(i), k j}\right) \delta_{k j}=\lim _{m \rightarrow \infty}\left(1-\cos ^{2 m}\left(2 \pi \frac{k-x_{i}}{2 x_{i}+1}\right)\right) \delta_{k j}
$$

An alternative way also to write this, is given by

$$
\overline{x_{(i), k j}}:=\lim _{m \rightarrow \infty} \sin ^{\frac{2}{m}}\left(2 \pi \frac{k-x_{i}}{2 x_{i}+1}\right) \delta_{k j}
$$

Explanation: We have a similiar situation like for our $x_{(i), k j}$, but in this case now, we have to use $2 / m$ to get an approximation for ' 1 '.

We see that we can use cos and also sin depending on which values we are interested in. Of course, don't forget the different cases for lim with $2 m$ respectively $2 / m$.

So, we can put this together to

$$
\eta_{(i), k j}:=\lim _{m \rightarrow \infty} \exp \left(I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)\right) \delta_{k j}
$$

I is the Imaginary unit, with $I^{2}=-1$ and

$$
\epsilon(m):= \begin{cases}2 m & \text { for real part } \operatorname{Re}(\eta) \\ \frac{2}{m} & \text { for imaginary part } \operatorname{Im}(\eta)\end{cases}
$$

Ok. What do we need, next? We need

$$
\exp \left(I z_{1}\right) \cdot \exp \left(I z_{2}\right)=\exp \left(I\left(z_{1}+z_{2}\right)\right)=\cos \left(z_{1}+z_{2}\right)+I \sin \left(z_{1}+z_{2}\right)
$$

so let's look at
$z_{1}+z_{2}=2 \pi \epsilon(m)\left(\frac{k-x_{1}}{2 x_{1}+1}+\frac{k-x_{2}}{2 x_{2}+1}\right)=2 \pi \epsilon(m) \frac{\left(k-x_{1}\right)\left(2 x_{2}+1\right)+\left(k-x_{2}\right)\left(2 x_{1}+1\right)}{\left(2 x_{1}+1\right)\left(2 x_{2}+1\right)}$
In https://github.com/Samdney/primescalc we already discussed a similiar situation, which showed us that we don't have any problems if $2 x_{1}+1$ and $2 x_{2}+1$ are primes. For more information about this, please read the mentioned paper.

So we can do our final step
$x_{(a, \ldots, b), k j}=\lim _{m \rightarrow \infty}\left(\prod_{i=a}^{b} \exp \left(I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)\right)\right) \delta_{k j}=\lim _{m \rightarrow \infty} \exp \left(\sum_{i=a}^{b} I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)\right) \delta_{k j}$

Now we look at the special case of $x_{i}=a, a+1, a+2, \ldots, b-2, b-1, b$ for the given sum

$$
\sum_{i=a}^{b} I 2 \pi \frac{k-x_{i}}{2 x_{i}+1} \epsilon(m)==I 2 \pi \frac{1}{4}\left(2 k \psi^{(0)}\left(b+\frac{3}{2}\right)+\psi^{(0)}\left(b+\frac{3}{2}\right)-2 k \psi^{(0)}\left((a-1)+\frac{3}{2}\right)-\psi^{(0)}\left((a-1)+\frac{3}{2}\right.\right.
$$

since

$$
\sum_{x=1}^{n} \frac{k-x}{2 x+1}=\frac{1}{4}\left(2 k \psi^{(0)}\left(n+\frac{3}{2}\right)-2 k \psi^{(0)}\left(\frac{3}{2}\right)-2 k+\psi^{(0)}\left(n+\frac{3}{2}\right)-\psi^{(0)}\left(\frac{3}{2}\right)\right)
$$

$\psi^{(n)}(x)$ is the n -the derivate of the digamma function.
Finally, a small comment about permitted ranges.
Since our functions work with fix period $\left(k-x_{i}\right) /\left(2 x_{i}+1\right)$, we have to ignore the range $\left[1, x_{i}\right]$ for each x_{i}-equation, else we will also receive invalid results.

