Primes matrix

https://blog.carolin-zoebelein.de/2018/03/primes-matrix.html Fri 23 Mar 2018 in Math, Carolin Zöbelein

Some time ago, I already wrote about representation ideas of primes and we saw that we run in troubles with this. Today, I want to present you a similar approach.

Let's start again with our equation

$$
x_{i j}=\left(2 x_{i}+1\right) x_{j}+x_{i} y_{i j}=\left(2 x_{i j}+1\right)
$$

and the following represenation
$x_{1 j} \quad\left|00010010010010010010 \ldots x_{2 j} \quad\right| 00000010000100001000 \ldots x_{(1,2), j} \mid 11101101101001100101 \ldots$

The first line is given by $x_{1 j}=3 x_{j}+1=4,7,10,13,16,19$. If we look a the numbers from 1 to 20 (from left to right), we represent all numbers which are generated by $x_{1 j}$, by ' 1 ' and the other numbers by ' 0 '. In the second line, we do the same for $x_{2 j}=5 x_{j}+2=7,12,17$.

In the third line we see $x_{(1,2), j}$, which represents all numbers which are not element of $x_{1 j}$ and not element of $x_{2 j}$ by ' 1 ' and the others by ' 0 '. So we can write

$$
x_{(1,2), j}=\overline{x_{1 j}} \cdot \overline{x_{2 j}}
$$

. Ok. What can we do with this, now?
At first, we look at $x_{1 j}$ and $x_{2 j}$. We will rewrite them to matrices $X_{(1)}^{n \times n}$ and $X_{(2)}^{n \times n}$. This matrices, all of the same size $n \times n$, have the numbers from the representation above as diagonal entries. All other entries are ' 0 '.

$$
X_{(1)}^{n \times n}:=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \ddots
\end{array}\right)=\left(x_{(1), k j}\right)_{k=1, \ldots, n, j=1, \ldots, n} \delta_{k j}
$$

$$
X_{(2)}^{n \times n}:=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \cdots \\
\vdots & \ddots
\end{array}\right)=\left(x_{(2), k j}\right)_{k=1, \ldots, n, j=1, \ldots, n} \delta_{k j}
$$

Here are

$$
x_{(i), k j}:= \begin{cases}1 & \text { if } k=\left(2 x_{i}+1\right) x_{l}+x_{i} \\ 0 & \text { else }\end{cases}
$$

and

$$
\delta_{k j}:= \begin{cases}1 & \text { if } k=j \\ 0 & \text { else }\end{cases}
$$

With this, we get $\overline{X_{(i)}^{n \times n}}$ by

$$
\overline{X_{(i)}^{n \times n}}=\Vdash_{n}-X_{(i)}^{n \times n}
$$

For an arbitrary number $i=a, \ldots, b, a, b \in \mathbb{N}, a \leq b$, of equations $x_{i j}$ we receive

$$
X_{(a, \ldots, b)}^{n \times n}=\prod_{i=a}^{b}\left(\nVdash_{n}-X_{(i)}^{n \times n}\right)
$$

and so

$$
x_{(a, \ldots, b), k j}=\prod_{i=a}^{b}\left(1-x_{(i), k j}\right) \delta_{k j}
$$

We received a matrix with ' 1 ' entries at the places $j=k$ which represent primes and else ' 0 '.

