Powers of 2 and k-digits structures

https://blog.carolin-zoebelein.de/2022/06/powers-of-2-and-k-digitsstructures.html Wed 01 Jun 2022 in Math, Carolin Zöbelein

In my paper Powers of 2 whose digits are powers of 2 (see also https://research.carolinzoebelein.de/public.html#bib6), I'm discussing digits of powers of 2, and which conditions are necessary to get for them powers of 2, too.

Given be the set of powers of 2 by $P_y = 2^y$, $y \in \mathbb{N}_0$. It is unknown if, apart from $P_{y=0} = 2^0 = 1$, $P_{y=1} = 2^1 = 2$, $P_{y=2} = 2^2 = 4$, $P_{y=3} = 2^3 = 8$ and $P_{y=7} = 2^7 = 128$, there exist more P_y 's whose digits are powers of 2 (A130693 in the On-line Encyclopedia of Integer Sequences (OEIS) http://oeis.org/A130693 [Dres07]) [Well97], too.

Looking at the set of powers of 2's [Sloa], we know that a *m*-digit power of 2 by P_y , has a periodicity of $\varphi(5^k) = 4 \cdot 5^{k-1}$ for the last $k \leq m$ digits, starting at 2^k [YaYa64]. Taking the known periodicity of the last *k*-digits into account, we want to discuss properties for the last k' > k digits, for fixed last *k*-digits of P_y .

Notation. If we write 2_k^y , we are talking about the k'th digit (counted from right to left, starting counting by 1) of 2^y , in base 10 representation. For step sizes we write $d_{y,k}^{k+1}$, meaning the step size of the k + 1-digit, starting by 2^y , with a k-digit periodicity. Furthermore, we will denote the set of all one-digit powers of 2 by $\mathcal{P}_2 := \{1, 2, 4, 8\}$.

For this, at first, we also considered k-digit structures of powers of 2 in generally, and used the following two lemmas as starting point for our proofs in the mentioned paper.

Lemma 2.1 (k-digits structure). Let be $P_y = 2^y$, $y \in \mathbb{N}_0$, and the last k^* -digits periodical with $\varphi(5^{k^*}) = 4 \cdot 5^{k^*-1}$, for all $2^y \ge 2^{k^*}$, $k^* \ge 2$. Then for $2^{k+k^*+\varphi(5^k)}$, $k \in [k^*, k^* + \varphi(5^{k^*-1}) - 1]$, the last k-digits are given by $2_1^{1+k^*+\varphi(5^1)} \cdot 2^{k-1}$, with $k - x \approx (1 - \log_{10}(2)) k - k^* \log_{10}(2)$ leading zeros for $k \ge 2$, and at least one leading zero for $k \ge 3$.

Proof. We know, that for the last k-digits $2^{k+k^*+\varphi(5^k)} \sim 2^{k+k^*}$, which have $x \approx (k+k^*)\log_{10}(2)$ digits. Since, we also have the periodicity $\varphi(5^k)$, we directly get $k - x \approx (1 - \log_{10}(2)) k - k^* \log_{10}(2)$ for the number of leading zeros. Looking at $0 \le k - x$, we receive $k \gtrsim k^* \frac{\log_{10}(2)}{1 - \log_{10}(2)}$, and hence $k \ge 2$ by the constraint $k^* \ge 2$, and for $1 \ge k - x$, with $k = k^*$, we receive $k \gtrsim \frac{1}{1 - 2\log_{10}(2)}$, and hence $k \ge 3$. Finally it is easy to see, that the statement is always satisfied for $k \ge k^*$, because of $k^* \gtrsim k^* \frac{\log_{10}(2)}{1 - \log_{10}(2)} \approx 0.4k^*$ for $k = k^*$.

Lemma 2.2 (k^* -digits fixed structure). Let be $P_y = 2^y$, $y \in \mathbb{N}_0$, and the last k^* -digits periodical with $\varphi(5^{k^*}) = 4 \cdot 5^{k^*-1}$, for all $2^y \ge 2^{k^*}$, $k^* \ge 2$. Then

for $2^{k+k^{\star}+\varphi(5^k)}$, $k \in [k^{\star}, k^{\star}+\varphi(5^{k^{\star}-1})-1]$, the last k+1 to $k+\delta k$ -digits are fixed for at least $\delta k = k^{\star}$ digits.

Proof. Consider
$$\left(2^{k+k^{\star}+\varphi(5^{k})}-2^{1+k^{\star}+\varphi(5^{1})}_{1}\cdot 2^{k-1}\right)\cdot 10^{-k}\cdot 2^{\varphi(5^{\delta k})} \approx \left(2^{(k+1)+k^{\star}+\varphi(5^{k+1})}-2^{1+k^{\star}+\varphi(5^{1})}_{1}\cdot 2^{(k+1)-1}\right)$$

 $\cdot 10^{-(k+1)}\left(2^{k+k^{\star}+\varphi(5^{k})}-2^{1+k^{\star}+\varphi(5^{1})}_{1}\cdot 2^{k-1}\right)\cdot 2^{\varphi(5^{\delta k})} \approx \left(2^{k+k^{\star}+\varphi(5^{k})}\cdot 2^{4\varphi(5^{k})}-2^{1+k^{\star}+\varphi(5^{1})}_{1}\cdot 2^{k-1}\right)$

 5^{-1} , for which we can equating the coefficients with approximation. We look at $\varphi(5^{\delta k}) \approx 4\varphi(5^k)$, and receive $\delta k \approx \lfloor \log_5 (4 \cdot 5^k) \rfloor \approx \lfloor 1.86k \rfloor \approx k$. Finally, we can conclude $\delta k \gtrsim k^*$ for $k \in [k^*, k^* + \varphi(5^{k^*-1}) - 1]$.

References

- [Dres07] RESDEN, GREGORY P.: A130693 OEIS: Powers of 2 whose digits are powers of 2.
- [Sloa] SLOANE, N. J. A.: Table of $n, 2^n$ for n = 0..1000 OEIS.
- [Well97]WELLS, DAVID: The Penguin dictionary of curious and interesting numbers : Penguin, 1997
- [YaYa6¥]AGLOM, AM ; YAGLOM, IM: Challenging Mathematical Problems with Elementary Solutions Bd. I, Holden-Day Inc. (1964)