Powers of 2 and k-digits structures

https://blog.carolin-zoebelein.de/2022/06/powers-of-2-and-k-digitsstructures.html
Wed 01 Jun 2022 in Math, Carolin Zöbelein

In my paper Powers of 2 whose digits are powers of 2 (see also https://research.carolinzoebelein.de/public.html\#bib6), I'm discussing digits of powers of 2 , and which conditions are necessary to get for them powers of 2 , too.

Given be the set of powers of 2 by $P_{y}=2^{y}, y \in \mathbb{N}_{0}$. It is unknown if, apart from $P_{y=0}=2^{0}=1, P_{y=1}=2^{1}=2, P_{y=2}=2^{2}=4, P_{y=3}=2^{3}=8$ and $P_{y=7}=2^{7}=128$, there exist more P_{y} 's whose digits are powers of 2 (A130693 in the On-line Encyclopedia of Integer Sequences (OEIS) http://oeis.org/A130693 [Dres07]) [Well97], too.

Looking at the set of powers of 2's [Sloa], we know that a m-digit power of 2 by P_{y}, has a periodicity of $\varphi\left(5^{k}\right)=4 \cdot 5^{k-1}$ for the last $k \leq m$ digits, starting at 2^{k} [YaYa64]. Taking the known periodicity of the last k-digits into account, we want to discuss properties for the last $k^{\prime}>k$ digits, for fixed last k-digits of P_{y}.
Notation. If we write 2_{k}^{y}, we are talking about the k 'th digit (counted from right to left, starting counting by 1) of 2^{y}, in base 10 representation. For step sizes we write $d_{y, k}^{k+1}$, meaning the step size of the $k+1$-digit, starting by 2^{y}, with a k-digit periodicity. Furthermore, we will denote the set of all one-digit powers of 2 by $\mathcal{P}_{2}:=\{1,2,4,8\}$.

For this, at first, we also considered k-digit structures of powers of 2 in generally, and used the following two lemmas as starting point for our proofs in the mentioned paper.

Lemma 2.1 (k-digits structure). Let be $P_{y}=2^{y}, y \in \mathbb{N}_{0}$, and the last k^{\star}-digits periodical with $\varphi\left(5^{k^{\star}}\right)=4 \cdot 5^{k^{\star}-1}$, for all $2^{y} \geq 2^{k^{\star}}, k^{\star} \geq 2$. Then for $2^{k+k^{\star}+\varphi\left(5^{k}\right)}$, $k \in\left[k^{\star}, k^{\star}+\varphi\left(5^{k^{\star}-1}\right)-1\right]$, the last k-digits are given by $2_{1}^{1+k^{\star}+\varphi\left(5^{1}\right)} \cdot 2^{k-1}$, with $k-x \approx\left(1-\log _{10}(2)\right) k-k^{\star} \log _{10}(2)$ leading zeros for $k \geq 2$, and at least one leading zero for $k \geq 3$.
Proof. We know, that for the last k-digits $2^{k+k^{\star}+\varphi\left(5^{k}\right)} \sim 2^{k+k^{\star}}$, which have $x \approx\left(k+k^{\star}\right) \log _{10}(2)$ digits. Since, we also have the periodicity $\varphi\left(5^{k}\right)$, we directly get $k-x \approx\left(1-\log _{10}(2)\right) k-k^{\star} \log _{10}(2)$ for the number of leading zeros. Looking at $0 \leq k-x$, we receive $k \gtrsim k^{\star} \frac{\log _{10}(2)}{1-\log _{10}(2)}$, and hence $k \geq 2$ by the constraint $k^{\star} \geq 2$, and for $1 \geq k-x$, with $k=k^{\star}$, we recive $k \gtrsim \frac{1}{1-2 \log _{10}(2)}$, and hence $k \geq 3$. Finally it is easy to see, that the statement is always satisfied for $k \geq k^{\star}$, because of $k^{\star} \gtrsim k^{\star} \frac{\log _{10}(2)}{1-\log _{10}(2)} \approx 0.4 k^{\star}$ for $k=k^{*}$.

Lemma 2.2 (k^{\star}-digits fixed structure). Let be $P_{y}=2^{y}, y \in \mathbb{N}_{0}$, and the last k^{\star}-digits periodical with $\varphi\left(5^{k^{\star}}\right)=4 \cdot 5^{k^{\star}-1}$, for all $2^{y} \geq 2^{k^{\star}}, k^{\star} \geq 2$. Then
for $2^{k+k^{\star}+\varphi\left(5^{k}\right)}, k \in\left[k^{\star}, k^{\star}+\varphi\left(5^{k^{\star}-1}\right)-1\right]$, the last $k+1$ to $k+\delta k$-digits are fixed for at least $\delta k=k^{\star}$ digits.
Proof. Consider $\left(2^{k+k^{\star}+\varphi\left(5^{k}\right)}-2_{1}^{1+k^{\star}+\varphi\left(5^{1}\right)} \cdot 2^{k-1}\right) \cdot 10^{-k} \cdot 2^{\varphi\left(5^{\delta k}\right)} \approx$ $\left(2^{(k+1)+k^{\star}+\varphi\left(5^{k+1}\right)}-2_{1}^{1+k^{\star}+\varphi\left(5^{1}\right)} \cdot 2^{(k+1)-1}\right)$
$\cdot 10^{-(k+1)}\left(2^{k+k^{\star}+\varphi\left(5^{k}\right)}-2_{1}^{1+k^{\star}+\varphi\left(5^{1}\right)} \cdot 2^{k-1}\right) \cdot 2^{\varphi\left(5^{\delta k}\right)} \approx\left(2^{k+k^{\star}+\varphi\left(5^{k}\right)} \cdot 2^{4 \varphi\left(5^{k}\right)}-2_{1}^{1+k^{\star}+\varphi\left(5^{1}\right)} \cdot 2^{k-1}\right)$
$\cdot 5^{-1}$, for which we can equating the coefficients with approximation. We look at $\varphi\left(5^{\delta k}\right) \approx 4 \varphi\left(5^{k}\right)$, and receive $\delta k \approx\left\lfloor\log _{5}\left(4 \cdot 5^{k}\right)\right\rfloor \approx\lfloor 1.86 k\rfloor \approx k$. Finally, we can conclude $\delta k \gtrsim k^{\star}$ for $k \in\left[k^{\star}, k^{\star}+\varphi\left(5^{k^{\star}-1}\right)-1\right]$.

References

[Dres071]resden, Gregory P.: A130693 - OEIS: Powers of 2 whose digits are powers of 2 .
[Sloa] Sloane, N. J. A.: Table of $n, 2^{n}$ for $n=0 . .1000$ - OEIS.
[Wel197]VElls, David: The Penguin dictionary of curious and interesting numbers : Penguin, 1997
[YaYa64]aglom, AM ; Yaglom, IM: Challenging Mathematical Problems with Elementary Solutions Bd. I, Holden-Day Inc. (1964)

