Let's calculate primes! Part I - Representation of times tables

https://blog.carolin-zoebelein.de/2017/12/lets-calculate-primes-part-i-representation-of-times-tables.html
Fri 29 Dec 2017 in Math, Carolin Zöbelein

Some days ago, I had several nice ideas for calculating primes recursively, which I want to share with you in a small series of posts.

I will use some insights of my work https://github.com/Samdney/primescalc and assume you already know they. If not, please read it sidewise to the following posts.
We have given our already known equation

$$
x_{i, j}=2 x_{i} x_{j}+x_{i}+x_{j}=\left(2 x_{j}+1\right) x_{i}+x_{j}=\left(2 x_{i}+1\right) x_{j}+x_{i}
$$

with $x_{i}, x_{j} \in \mathbb{N}$. Remember that this equation gives us all $x_{i, j}$ for which $2 x_{i, j}+1$ is an integer divisible number.

So let's look, for example on the numbers of $x_{i}=1$, which are

$$
x_{1, j}=4,7,10,13,16,19,22,25,28, \ldots
$$

Now we will choose a simple way of representation of this numbers. Be given the general form of a number in decimal representation:

$$
\sum_{k=0}^{n} 10^{k}
$$

with $n+1, n \in \mathbb{N}$, digits. Now assume, in our example, the number 4 is represented by the number 1 , at the $4+1$ digit, the number 7 by the number 1 , at the $7+1$ digit and so on. So we can write (read from right to left) as represenation for $x_{1, j}$:

$$
\sum_{x_{j}} 10^{\left(2 x_{i}+1\right) x_{j}+x_{i}}=\sum_{x_{j}} 10^{3 x_{j}+1}
$$

and

$$
\ldots 10010010010010010010010010000
$$

In this way, we can write every of our times tables which are given by $x_{i, j}=$ $\left(2 x_{i}+1\right) x_{j}+x_{i}$.
If we finally calculate this sum, we receive

$$
\sum_{x_{j}=l}^{u} 10^{\left(2 x_{i}+1\right) x_{j}+x_{i}}=-\frac{10^{\left(2 x_{i}+1\right) l+x_{i}}-10^{\left(2 x_{i}+1\right)(u+1)+x_{i}}}{10^{2 x_{i}+1}-1}
$$

. See also wolframalpha.com.
But what can we do with this, now?
In the next post we will look at the intersection of times tables with this kind of representation.

