Cyclotomic polynomials for primes

https://blog.carolin-zoebelein.de/2018/07/cyclotomic-polynomials-forprimes.html
Wed 18 Jul 2018 in Math, Carolin Zöbelein

Currently, I'm spending my time with cyclotomic polynomials. So, I don't want to miss the possibility also to mention a small note about the connection of this polynomials to the set of prime numbers.
At first, we have a cyclotomic polynomial in the following way

$$
\begin{equation*}
\phi_{n}(x)=\prod_{\substack{1 \leq g \leq n \\ g g T(g, n)=1}}\left(x-e^{\frac{2 \pi i g}{n}}\right) \tag{1}
\end{equation*}
$$

with $n, g \in \mathbb{N}$, respectively

$$
\begin{align*}
x^{n}-1 & =\prod_{1 \leq g \leq n}\left(x-e^{\frac{2 \pi i g}{n}}\right) \\
& =\prod_{d \mid n} \prod_{\substack{1 \leq g \leq n \\
g g T(g, n)=d}}\left(x-e^{\frac{2 \pi i g}{n}}\right) \\
& =\prod_{d \mid n} \phi_{n / d}(x) \\
& =\prod_{d \mid n} \phi_{d}(x) \tag{2}
\end{align*}
$$

. In the case of pime numbers $p \in \mathbb{P}$, we also have

$$
\begin{equation*}
\phi_{p}(x)=1+x+x^{2}+\cdots+x^{p-1}=\sum_{k=0}^{p-1} x^{k} \tag{3}
\end{equation*}
$$

. From this follows the first rewriting

$$
\begin{align*}
\phi_{p}(x) & =\sum_{k=0}^{p-1} x^{k} \\
& =\sum_{k=0}^{p-1} e^{k \ln (x)} \\
& =e^{0 \ln (x)}+\sum_{k=1}^{p-1} e^{k \ln (x)} \\
& =1+\frac{e^{\ln (x)}\left(e^{(p-1) \ln (x)}-1\right)}{e^{\ln (x)}-1} \tag{4}
\end{align*}
$$

, since

$$
\sum_{k=1}^{n} e^{k A}=\frac{e^{A}\left(e^{A n}-1\right)}{e^{A}-1}
$$

. Now we will solve this equation for p.

$$
\begin{align*}
\phi_{p}(x) & =1+\frac{e^{\ln (x)}\left(e^{(p-1) \ln (x)}-1\right)}{e^{\ln (x)}-1} \\
\left(\phi_{p}(x)-1\right)\left(e^{\ln (x)}-1\right) & =e^{\ln (x)}\left(e^{(p-1) \ln (x)}-1\right) \\
\frac{\left(\phi_{p}(x)-1\right)\left(e^{e^{\ln (x)}}-1\right)}{e^{\ln (x)}}+1 & =e^{(p-1) \ln (x)} \\
(p-1) \ln (x) & =\ln \left(\frac{\left(\phi_{p}(x)-1\right)\left(e^{\ln (x)}-1\right)}{e^{\ln (x)}}+1\right) \\
(p-1) \ln (x) & =\ln \left(\frac{\left(\phi_{p}(x)-1\right)(x-1)+x}{x}\right) \\
\ln (x)((p-1)+1) & =\ln \left(\left(\phi_{p}(x)-1\right)(x-1)+x\right) \\
p & =\ln \left(\frac{\left(\phi_{p}(x)-1\right)(x-1)+x}{x}\right) \tag{5}
\end{align*}
$$

Additionally, we have our second, very easy to see, connection for prime numbers

$$
\begin{align*}
\phi_{p}(x) & =x^{p}-1 \\
& =\sum_{k^{\prime}=0}^{p} x^{k^{\prime}}-\sum_{k^{\prime \prime}=0}^{p-1} x^{k^{\prime \prime}}-1 \\
& =\phi_{p+1}(x)-\phi_{p}(x)-1 \tag{6}
\end{align*}
$$

I have no idea for which this can be useful, but I think it is nice to know : P.

